
您似乎是从中国境内访问我们的网站的。请导航至我们的优化版网站：amazonaws-china.com。

Create a Free

AWS Account

Search

Search

Posts by Product

Amazon Aurora

AWS Database

Migration Service

(DMS)

Amazon

DynamoDB

Amazon EC2

Amazon

ElastiCache

Amazon

Elasticsearch

Service

AWS IOT

Amazon Kinesis

AWS Lambda

Amazon RDS for

MySQL

Amazon RDS for

Oracle

AWS Database Blog

Amazon Aurora Under the Hood:
Quorum Reads and Mutating State

by Anurag Gupta | on 16 AUG 2017 | in Amazon Aurora, Aurora, Database | Permalink |

Comments | Share

Anurag Gupta runs a number of AWS database services, including Amazon
Aurora, which he helped design. In this under the hood series, Anurag
discusses the design considerations and technology underpinning Aurora.

In my last post, I talked about the benefits of using a quorum model. I

discussed how such systems are resilient in the face of latency outliers, short

periods of unavailability, and the long-term loss of disks and nodes. That

raises the obvious question—if quorums are so awesome, why doesn’t

everyone use them?

Reads become slow in quorum systems

One issue is that reads become slow in quorum systems. Quorum models

require that there be at least one member in both the read quorum and write

quorum. In a system like Amazon Aurora with a quorum of six, that means

that you’d need to read three copies of data to ensure you overlapped with a

write quorum of four.

That’s unfortunate. Usually when you’re reading a database page, it means

that you’ve missed in the buffer cache, and your SQL statement is blocked

waiting for the I/O before it can proceed. To read three copies of data, you

want to try to access circa five, to mask outlier latency and intermittent

availability issues. Doing that puts burden on the network—database pages

are fairly large and the read amplification is meaningful. The performance of

quorum reads doesn’t compare well to a traditional replication system, where

data is written to all copies but can be read from any single one of them.

However, Aurora avoids quorum amplification during writes. We do write out

six copies, but we only write log records, not full data pages. The data pages

are assembled within the storage node from prior versions of the data page

and the incoming log. We can also write asynchronously. Neither are possible

for reads.

https://aws.amazon.com/optin/?country=CN&token=d51ca47a-9928-45bd-98d9-f173bfc0cdef
http://aws.amazon.com/free/
https://aws.amazon.com/blogs/database/category/aurora/
https://aws.amazon.com/blogs/database/category/dms/
https://aws.amazon.com/blogs/database/category/dynamodb/
https://aws.amazon.com/blogs/database/category/ec2/
https://aws.amazon.com/blogs/database/category/elasticache/
https://aws.amazon.com/blogs/database/category/elasticsearch/
https://aws.amazon.com/blogs/database/category/iot/
https://aws.amazon.com/blogs/database/category/kinesis/
https://aws.amazon.com/blogs/database/category/lambda/
https://aws.amazon.com/blogs/database/category/rds-mysql/
https://aws.amazon.com/blogs/database/category/rds-oracle/
https://aws.amazon.com/blogs/database/
https://aws.amazon.com/blogs/database/category/database/amazon-aurora/
https://aws.amazon.com/blogs/database/category/aurora/
https://aws.amazon.com/blogs/database/category/database/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/
https://commenting.awsblogs.com/embed.html?disqus_shortname=aws-database-blog&disqus_identifier=1494&disqus_title=Amazon+Aurora+Under+the+Hood%3A+Quorum+Reads+and+Mutating+State&disqus_url=https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/?nc2=h_lg

Amazon RDS for

PostgreSQL

Amazon RDS for

SQL Server

AWS Schema

Conversion Tool

(SCT)

RSS Feed

 Subscribe to this

blog's feed

Recent Posts

Introducing

Amazon S3 and

Microsoft Azure

SQL Database

Connectors in AWS

Database Migration

Service

Viewing Amazon

Elasticsearch

Service Slow Logs

Replicating Amazon

EC2 or On-Premises

SQL Server to

Amazon RDS for

SQL Server

Querying on

Multiple Attributes

in Amazon

DynamoDB

Automating Cross-

Region and Cross-

Account Snapshot

Copies with the

Snapshot Tool for

Amazon Aurora

Automating SQL

Caching for Amazon

How to avoid read-quorum overhead

The overhead of read quorums is a clear disadvantage of quorum systems.

How do we avoid it? The key thing is to use state.

State is often considered a dirty word in distributed systems—it is hard to

manage and coordinate consistent state as you scale nodes and encounters

faults. Of course, the entire purpose of database systems is to manage state,

providing atomicity, consistency, isolation, and durability (ACID). Aurora sits at

the intersection of these two technology domains. Much of our innovation has

come from applying concepts from one domain to drive progress in the other.

Although it is difficult to establish consensus on distributed state without

communication, there are often local oases of consistency that you can use to

avoid the need for consensus, coordination, or locking. The specific example

we apply here is that of read views. Many database systems have a similar

concept, but let’s focus on MySQL.

MySQL, like all relational databases, needs to provide ACID support. A read

view establishes a logical point in time, before which a SQL statement must

see all changes that have been committed and not see any changes that are

not yet committed. MySQL does this by establishing the log sequence number

(LSN) of the most recent commit. This approach ensures that all changes

already committed are to be made visible, and uses an active transactions list

to establish the list of changes that should not be seen. When a statement

with a particular read view inspects a data page, it needs to back out any

changes for transactions that were active at the time it established a read

view. This is so even if these changes are currently committed, and also affects

any transactions that were started after the read-point commit LSN. When a

transaction establishes a read view, it can isolate itself from all other changes

going on in the system—if it can backtrack to a suitably consistent point in

time.

What does this have to do with read quorums? Everything. The database is

continually writing changes to storage nodes. It marks an individual change as

durable once it receives four acknowledgements back. It updates the point of

volume durable when all changes before that point have been registered as

individually durable. As part of the bookkeeping it needs to perform to do this

work, it knows which storage nodes have acknowledged which write requests

and can be queried to see those changes. When a read request comes in, the

request has a read-point commit LSN that the database needs to see. The

database can simply dispatch the request to any storage node it knows to be

complete at or beyond the read-point commit LSN.

This approach uses the bookkeeping state that we have to maintain anyway to

avoid a quorum read. Instead, we read from a node that we know has the data

version we need. This approach avoids considerable network, storage node,

and database node processing.

How to avoid latency

However, by avoiding the read quorum, we make ourselves subject to latency

https://aws.amazon.com/blogs/database/category/rds-postgresql/
https://aws.amazon.com/blogs/database/category/rds-sql-server/
https://aws.amazon.com/blogs/database/category/schema-conversion-tool-sct/
https://aws.amazon.com/blogs/database/feed/
https://aws.amazon.com/blogs/database/introducing-amazon-s3-and-microsoft-azure-sql-database-connectors-in-aws-database-migration-service/
https://aws.amazon.com/blogs/database/viewing-amazon-elasticsearch-service-slow-logs/
https://aws.amazon.com/blogs/database/replicating-amazon-ec2-or-on-premises-sql-server-to-amazon-rds-for-sql-server/
https://aws.amazon.com/blogs/database/querying-on-multiple-attributes-in-amazon-dynamodb/
https://aws.amazon.com/blogs/database/%C2%AD%C2%AD%C2%ADautomating-cross-region-cross-account-snapshot-copies-with-the-snapshot-tool-for-amazon-aurora/
https://aws.amazon.com/blogs/database/automating-sql-caching-for-amazon-elasticache-and-amazon-rds/
https://aws.amazon.com/relational-database/
https://aws.amazon.com/?nc2=h_lg

ElastiCache and

Amazon RDS

Migrating a SQL

Server Database to

a MySQL-

Compatible

Database Engine

Using Amazon

Redshift for Fast

Analytical Reports

Testing Amazon

RDS for Oracle:

Plotting Latency

and IOPS for OLTP

I/O Pattern

Get Started with

Amazon

Elasticsearch

Service: Filter

Aggregations in

Kibana

Useful
Documentation Links

Cloud Databases

with AWS

Amazon RDS

AWS Database

Migration Service

Amazon

DynamoDB

Amazon

ElastiCache

Amazon Redshift

AWS Blogs

AWS Blog

AWS Big Data

issues from a single storage node. We manage this by tracking read-request

response time from storage nodes. We generally then query the lowest

latency node, and occasionally also query one of the others to ensure our

latency information stays up to date.

This work is straightforward for a single database node, because it sees all

writes and can easily coordinate all reads. It’s more complex when you

consider read replicas. In Aurora, read replicas share the same storage volume

as the master database node and are asynchronously shipped the master’s

redo log stream to update data pages in cache. This approach not only lowers

costs, but also ensures that replicas can be promoted to master nodes without

loss of data or the write latency penalty of synchronous replication. Any data

change that was marked as committed by acknowledgements to the write

master node is durable even if that change hasn’t yet propagated to a replica.

These replica nodes issue their own reads, but they don’t have visibility to the

writes and acknowledgements to know what to read.

So, as we ship redo records from master to replica, we also ship the conceptual

equivalent of a read view. This view advances the commit LSN and the

information on which segments are durable to which LSN points. Generally,

we’re able to advance the commit LSN every 10 milliseconds or so, keeping

the replicas closely aligned with the write master node with minimal

coordination.

Avoiding destructive writes

Key to this approach is avoiding destructive writes. A large part of the reason

people need to coordinate traffic between readers and writers is to ensure

that the data they need to read is visible. With read views, this coordination is

greatly reduced—as long as you can revert to previous images of a page. In

Aurora, we write data pages out of place. We garbage-collect old versions

when we know that they are backed up and all readers have advanced their

read point beyond that version. This approach allows replica nodes operating

a few milliseconds behind the mastering node to establish a structurally

consistent view of the database.

A relational database, at core, is a redo log that always advances, even to

apply the rollback of a transaction. The data pages that comprise the

database are really just point-in-time cached instantiations of the application

of the redo log. The fact that most databases destructively write data pages is

really just a historical curiosity based on the high cost of disks when relational

databases were first created.

In Aurora, using the approach outlined above, we don’t really have read

quorums. Instead, we have repair quorums. We only need to query a read

quorum when we lose the cached state at the write master database node. If

we have to restart the master instance or promote a replica to master, we do

need to query at least a read quorum to rebuild our local state. It turns out

that we need to do so anyway to understand what transactions are committed

—likely we’ll discuss that in another blog post someday. Given that database

https://aws.amazon.com/blogs/database/automating-sql-caching-for-amazon-elasticache-and-amazon-rds/
https://aws.amazon.com/blogs/database/migrating-a-sql-server-database-to-a-mysql-compatible-database-engine/
https://aws.amazon.com/blogs/database/using-amazon-redshift-for-fast-analytical-reports/
https://aws.amazon.com/blogs/database/testing-amazon-rds-for-oracle-plotting-latency-and-iops-for-oltp-io-pattern/
https://aws.amazon.com/blogs/database/get-started-with-amazon-elasticsearch-service-filter-aggregations-in-kibana/
https://aws.amazon.com/products/databases/
https://aws.amazon.com/rds/
https://aws.amazon.com/dms/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/redshift/
http://aws.amazon.com/blogs/aws/
https://blogs.aws.amazon.com/bigdata/
https://aws.amazon.com/?nc2=h_lg

Related Posts

Now Available – Amazon Aurora with PostgreSQL Compatibility

Automating Cross-Region and Cross-Account Snapshot Copies with the Snapshot Tool for Amazon

Aurora

Migrating a SQL Server Database to a MySQL-Compatible Database Engine

Categorizing and Prioritizing a Large-Scale Move to an Open Source Database

Monitoring Amazon Aurora Audit Events with Amazon CloudWatch

Capturing Data Changes in Amazon Aurora Using AWS Lambda

Picking Your First Database to Migrate to Amazon RDS or Amazon Aurora with PostgreSQL-

compatibility

Amazon Aurora Fast Database Cloning

AWS Security

AWS Compute

AWS Partner

Network

AWS Internet of

Things Blog

crashes are many orders of magnitude less frequent than reads, this tradeoff
is well worth making.

Summary

With this post and the prior one, we’ve seen how you can use quorums to

provide availability and how you can avoid the traditional read quorum

overhead. In the next post, we’ll talk about how to make quorum systems

affordable. If you have other questions, leave a comment here or ping us at

aurora-pm@amazon.com.

Read Next: Amazon Aurora Under the Hood: Reducing Costs Using Quorum

Sets

 View

Comments

Create a Free Account

https://aws.amazon.com/blogs/aws/now-available-amazon-aurora-with-postgresql-compatibility/?nc1=b_rp
https://aws.amazon.com/blogs/database/%C2%AD%C2%AD%C2%ADautomating-cross-region-cross-account-snapshot-copies-with-the-snapshot-tool-for-amazon-aurora/?nc1=b_rp
https://aws.amazon.com/blogs/database/migrating-a-sql-server-database-to-a-mysql-compatible-database-engine/?nc1=b_rp
https://aws.amazon.com/blogs/database/categorizing-and-prioritizing-a-large-scale-move-to-an-open-source-database/?nc1=b_rp
https://aws.amazon.com/blogs/database/monitoring-amazon-aurora-audit-events-with-amazon-cloudwatch/?nc1=b_rp
https://aws.amazon.com/blogs/database/capturing-data-changes-in-amazon-aurora-using-aws-lambda/?nc1=b_rp
https://aws.amazon.com/blogs/database/picking-your-first-database-to-migrate-to-amazon-rds-or-amazon-aurora-for-postgresql/?nc1=b_rp
https://aws.amazon.com/blogs/aws/amazon-aurora-fast-database-cloning/?nc1=b_rp
http://blogs.aws.amazon.com/security/
https://aws.amazon.com/blogs/compute/
https://aws.amazon.com/blogs/apn/
https://aws.amazon.com/blogs/iot/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
mailto:aurora-pm@amazon.com
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/
https://commenting.awsblogs.com/embed.html?disqus_shortname=aws-database-blog&disqus_identifier=1494&disqus_title=Amazon+Aurora+Under+the+Hood%3A+Quorum+Reads+and+Mutating+State&disqus_url=https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/
https://aws.amazon.com/?nc2=h_lg
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html?nc2=h_ct

